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Abstract— The classical description of quantum states is in
general exponential in the number of qubits. Can we get polynomial
descriptions for more restricted sets of states such as ground
states of interesting subclasses of local Hamiltonians? This is the
basic problem in the study of the complexity of ground states,
and requires an understanding of multi-particle entanglement and
quantum correlations in such states.

Area laws provide a fundamental ingredient in the study of the
complexity of ground states, since they offer a way to bound in
a quantitative way the entanglement in such states. Although they
have long been conjectured for many body systems in arbitrary
dimensions, a general rigorous was only recently proved in Hast-
ings’ seminal paper [8] for 1D systems. In this paper, we give
a combinatorial proof of the 1D area law for the special case of
frustration free systems, improving by an exponential factor the
scaling in terms of the inverse spectral gap and the dimensionality
of the particles. The scaling in terms of the dimension of the
particles is a potentially important issue in the context of resolving
the 2D case and higher dimensions, which is one of the most
important open questions in Hamiltonian complexity.

Our proof is based on a reformulation of the detectability lemma,
introduced by us in the context of quantum gap amplification [1].
We give an alternative proof of the detectability lemma, which is
not only simpler and more intuitive than the original proof, but
also removes a key restriction in the original statement, making it
more suitable for this new context. We also give a one page proof of
Hastings’ proof that the correlations in the ground states of gapped
Hamiltonians decay exponentially with the distance, demonstrating
the simplicity of the combinatorial approach for those problems.

Keywords-area law, ground state, Hamiltonian, description com-
plexity, detectability lemma, entanglement

1. INTRODUCTION

While the exponential description of quantum states (the

fact that 2n complex numbers are necessary to describe

the general state of an n qubit system) leads to the ex-

traordinary computational power of quantum systems, it is

also a fundamental source of difficulty in simulating and

analyzing quantum systems. Are there important classes of

quantum states that have polynomial descriptions? A natural

class to consider is ground states of local Hamiltonians,

H = H1 + . . . + Hm, where each term Hi is a positive

definite matrix which acts non-trivially on at most k qubits.

If the ground state is unique (the minimum eigenvalue of

H has multiplicity 1), then it can be efficiently specified by

H , whose description is O(mnk2k). However, this is not

a useful description since, for example, even the problem

of computing the energy (eigenvalue) of the ground state,

given H , is QMA-complete. What we want is a description

of the quantum state that allows an efficient implementation

of any k qubit measurement on the quantum state. The

flip side of this problem occurs if we describe the ground

state by specifying the reduced density matrices on each

subset of k qubits. Now it is easy to implement any k qubit

measurement. The problem is that it is hard to verify whether

the
(
n
k

)
density matrices are consistent with a quantum state

on the entire system, i.e., whether they can be glued together

into one state.

Formally, a set of n qubit quantum states S have an

efficient description scheme, if there are two polynomial

time procedures: CHECK and MEASURE, and a polynomial

length bit string x encoding each quantum state in S, with

the following property: if CHECK(x) = 1 then x is an en-

coding of a valid quantum state on n qubits. MEASURE(x,

M) is the outcome of performing measurement M on the

state represented by x, for any k qubit measurement M .

Of course, the definition can be generalized to consider

approximate versions of description schemes.

The challenge of classifying which quantum state sets

have efficient description schemes is not only fundamental

to quantum complexity theory, it is also of major importance

to condensed matter physics. The question is of particular

interest when attention is restricted to the set of states which

are ground states of local Hamiltonians; in other words, for

which sets of local Hamiltonians do the ground states have

efficient description schemes, such that analysis and study of



these states becomes possible. What makes these questions

particularly challenging is the phenomenon of multi-particle

entanglement, which is far from understood quantitatively,

and is responsible for the exponential description of general

quantum states.

A local Hamiltonian is said to be gapped if its spectral

gap – the difference between the lowest and second the

lowest eigenvalues - is constant . This is a particularly im-

portant class of Hamiltonians since many naturally occurring

Hamiltonians are gapped. The ground states of gapped local

Hamiltonians are believed to obey area laws, which provide

a way of bounding the entanglement in ground states of such

Hamiltonians. Consider the interaction graph (hypergraph)

associated with a local Hamiltonian — it has a vertex for

each particle and an edge (hyper-edge) for each term of the

Hamiltonian. Roughly, an area law says that entanglement

is local in this interaction graph in the following sense:

consider a subset of particles L. Then if the system is in its

ground state, then the entanglement entropy across the cut

(L, L̄) is big-Oh of the number of edges crossing between

L and L̄.

A few years ago, in a seminal paper [8], Hastings proved

that the area law holds for 1D systems, if the Hamiltonian

is gapped. In this case the interaction graph is a path, and

the area law says that ground state entanglement across any

contiguous cut is bounded by a constant. Previously, Vidal

has proved that when the entanglement in a 1D system

is bounded by a constant along every contiguous cut, an

efficient description scheme of the ground state exists, in the

form of what is called Matrix Product states (MPSs) with

bounded bond dimension [11]. Hastings’ result thus implies,

via the results of Vidal, that for ground states of 1D gapped

Hamiltonians, efficient description schemes exist.

A major open problem is to extend Hastings’ result to

higher dimensions, as well as to extend the description

schemes assuming such bounds on the entanglement. The

problem of extending Hastings result to higher dimensions

was tackled so far mainly by physicists. One reason is

that Hastings’ proof uses sophisticated analytic methods

common to the condensed matter physics literature such as

the Lieb-Robinson bound. This is a bound on the velocity

at which disturbances propagate in local many-body quan-

tum systems, which has proved to be extremely useful for

understanding their structure.

1.1. Results

In this paper we introduce a combinatorial approach to

the area law question, and to the related question regarding

quantum correlations in ground states. Our approach is

based on a reformulation (together with a much simplified

proof), of the Detectability Lemma (DL) introduced by

the authors in Ref. [1] in the different context of the

quantum PCP challenge. The DL provides an approximation

to the projection on the ground space, which has a simple

product structure that is amenable to analyzing the generated

entanglement. We believe that the combinatorial nature of

the DL makes it a useful tool to tackle questions related to

quantum correlations in ground states of local Hamiltonians.

As a first example of how the DL can be used to handle

correlations, we provide a one page proof of Hastings’ result

[6] that the correlations in the ground states of Gapped

Hamiltonians decay exponentially with the distance. This

applies to d-dimensional grids for any d. More precisely,

consider two local observables A and B, which act on sets

of particles that are of distance � on the grid; the decay of

correlations means that the expectation value of their product

is (almost) equal to the product of their expectation, up to

an error which decays exponentially with the grid distance

between those operators.

We then apply the reformulation of the DL to the much

more involved problem of the area law in 1D. We provide

a proof of the area law for 1D frustration-free gapped

Hamiltonians. Using an intricate combinatorial analysis, we

derive a result which is almost exponentially better than

that of Hastings [8], in terms of the scaling in the inverse

spectral gap and the dimensionality of the particles. Whereas

Hastings’ upper bound scales as eO(X) for X
def
= 1

ε log d,

our upper bound scales quasi-polynomially as XO(logX) =
eO(log2 X).

For a fixed d, a simple lower bound was known via

a state whose entropy scales logarithmically with those

parameters [2], [3]. Recently, tighter examples were found

by Gottesman and Hastings [5], and independently by Irani

[9], in which the entanglement scales polynomially with the

inverse spectral gap1. Our improved bounds therefore reduce

an exponential mismatch (in terms of the spectral gap)

between the upper and lower bounds, to a quasi-polynomial

one

In addition, the resulting proof is combinatorial and

completely bypasses the analytic techniques that seemed

to be a major barrier for computer scientists’ participation

in this important aspect of Hamiltonian complexity. It also

raises the hope that similar tools can be used to tackle

the 2D case, which is one of the major open questions

in condensed matter theory. Indeed, if the quasi-polynomial

bound in X = 1
ε log d in the entanglement entropy for the

1D case were improved to linear in X , the area law for 2D

would follow.

One might imagine that this exponential decay of correla-

tions implies that the entanglement between a region L and

its complement is (mostly) located at the boundary of L, and

thus obeys an area law. However, such an implication is not

1The examples in these papers are of a frustrated Hamiltonians, whereas
our results apply for frustration-free systems. However, the construction
in Ref. [9] is translation-invariant. It can be easily modified to be made
frustration-free [10] if the translation-invariance requirement is dropped,
yielding a system in which the entanglement entropy S is lower-bounded
by ε1/6, where ε > 0 is the spectral gap of the system.



known, and indeed, a beautiful example by Hastings shows

a matrix product state (MPS), constructed using quantum

expanders, in which the entanglement entropy is exponential

in the correlation length [7], [8].
Our results hold in the frustration-free case. We men-

tion, however, that many of the quantum phenomenon are

revealed already in the context of frustration-free Hamil-

tonians, and that the major open problems in quantum

Hamiltonian complexity (e.g, quantum PCP and 2D area

law) are wide open already for this case. Much is to be

learned from studying frustration-free Hamiltonians, before

we proceed to the more general case. Moreover, Hastings’

original proof [8] essentially reduces the frustrated case into

an approximately frustration-free system by coarse graining,

and a similar approach may work to extend the results

presented here to the general case.
We proceed to an overview of the DL and the proof of

the area law.

1.2. The Detectability Lemma (DL)
Consider a gapped frustration-free local Hamiltonian H =∑m
i=1Hi with 0 ≤ Hi ≤ 1, in which the ground energy is

0, and the spectral gap is ε = O(1). Denote the ground state

by |Ω〉. We would like to understand “local” properties of

the ground state, such as behavior of correlations between

distant particles in the ground state, propagation in space of

perturbations, etc. To this end we would like to mimic the

projection on the ground state, Πgs = |Ω〉〈Ω|, by a “local”

operator (for some notion of locality to be clarified soon).
One way to approach this question is to ask: is there a

local operator that fixes the ground state but shrinks all other

eigenvectors significantly? A natural first guess for such an

operator is the operator G = (�− 1
mH). It fixes the ground

space, and shrinks its orthogonal complement by a factor

that can be as large as (1− ε/m). As m increases the factor

approaches 1 and the shrinking becomes negligible. This is

not strong enough for various purposes, as we will soon see;

our challenge is to do better. Suitably reformulated, the DL

provides an operator which fixes the ground state but shrinks

all other eigenstates by a constant factor, independent of m.
For simplicity of the current discussion, let us explain

the exact statement under the assumption that the particles

are on a 1D chain, and that Hi are projections Qi that

act on adjacent particles, so that H =
∑n−1

i=1 Qi. Set Pi

to be the projections into the local ground spaces of Hi,

i.e., Pi = � − Qi. The {Qi} terms can be partitioned into

two sets, the even and odd terms, which we call layers

(see Fig. 1), and the projections into the common ground

spaces of these layers are given by Πodd
def
= P1P3P5 · · ·

and Πeven
def
= P2P4P6 · · · . The DL states that the operator

A
def
= ΠevenΠodd (1)

is the “local” operator we want. We can now explain what

we mean by “locality”: when A is applied � times to some

H1 H3 H5 H7 H9 H11

H2 H4 H6 H8 H10Layer 1 (even)

Layer 2 (odd)

Figure 1. Partitioning the local terms of the 1D-, nearest-neighbor
Hamiltonian H =

∑n−1
i=1 into two subsets (layers): even layer, consisting

of terms Hi that work on particles i, i+1 with even i, and a complementary
odd layer.

|Ω〉
B

Figure 2. The “causality cone” of projections that is defined by a local
operator B working on � = 4 layers. These are the local terms in the layers
that are graph-connected to B (shaded ovals).

local perturbation B that acts on the ground state |Ω〉, there

is a pyramid-shaped “causality cone” of projections that is

defined by B. These are simply all terms which are graph-

connected to the operator in question (see Fig. 2). All the

projections outside that cone commute with B and can

therefore be absorbed in the ground state, leaving us with a

local operator of size O(�).
The DL implies that A� can be viewed as an excellent

approximation to the ground state projection Πgs. Indeed, as

A shrinks all the states that are perpendicular to the ground

space by a constant factor, it follows that :

‖A� −Πgs‖ ≤ e−O(�) . (2)

In our new simplified proof of this reformulation of the

DL, we also manage to drop the additional assumption about

the number of distinct types of terms of the Hamiltonian that

was used in [1].

1.3. Overview of the area law in 1D

We consider some cut in the chain, and we would like to

bound the entropy of |Ω〉, the unique ground state of a local

gapped 1D Hamiltonian, along that cut. As a warm up let’s

start by considering the commuting case, where proving the

area law is simple. Indeed, if the Schmidt decomposition of

|Ω〉 along the cut is |Ω〉 = ∑
i λi|Li〉 ⊗ |Ri〉, we can start

with the product state |φ〉 def
= |L1〉 ⊗ |R1〉, which has an

overlap of λ1 with the ground state. We can then project

it onto the ground state by acting on it with the product∏n−1
i=1 Pi. In the commuting case all the local projections Pi

commute and so this is indeed the projection to the ground

state. We find that |Ω〉 = 1
λ1

∏
i Pi|L1〉 ⊗ |R1〉. But of all

the projections in the product, only the projections whose

support intersects with the cut actually change the Schmidt

rank of the state. Moreover, as each one of those projections

is a local projection over two particles of dimension d, it

is easy to see that the resulting state, |Ω〉, would have a

maximal Schmidt rank of D0
def
= d2. From here, it is now



easy to deduce that the entropy of |Ω〉 along the cut is upper

bounded by logD0 = 2 log d.

The starting point for the non-commuting case is the

same. We start from the state |φ〉 def
= |L1〉 ⊗ |R1〉, and

would like to project it onto the ground state. However, as

the Pi no longer commute, their product is no longer the

projection to the ground state. We could try to use the DL

to approximate that projection. Applying the DL operator

A � times, we obtain a state |φ�〉 = A�|L1〉 ⊗ |R1〉, where

A� is the approximation of the projection on the ground

state, using Eq. (2). This provides an exponentially good

approximation to the ground state; unfortunately, the growth

of the Schmidt rank is also exponential in �, and the tradeoff

between the two is unfavorable and does not result in a

useful bound. Instead, we must modify the operator A to

one that approximates the projection onto the ground state

while still producing significantly slower growth in Schmidt

rank. The technical details are quite involved, and we defer

further explanations to the proof presented in the body of

the paper.

1.4. Open Questions

A technical open question is to tighten the quasi-

polynomial gap (in terms of the spectral gap) between the

1D area law and the lower bounds provided by Gottesman-

Hastings and Irani.

Of course, the most important open question is to extend

the proofs to the 2D case and beyond. One approach is to

improve the 1D area law in terms of dependence on the

dimensionality of the particles d, to O(log d), so that when

the 2D structure is viewed as 1D (for example, by fusing

together particles along columns parallel to the cut), the

1D bound would suffice to prove a 2D area law. A more

promising avenue would also take into account the local

structure of the problem along the dimension of the cut.

For example, it might be helpful to understand the decay of

correlations along the cut.

It also remains open to clarify how area laws can be used

to provide more efficient description schemes in dimensions

higher than 1.

2. NOTATIONS AND PRELIMINARIES

We consider a local Hamiltonian H acting on H =
(�d)⊗n, the space of n qudits of dimension d. H =

∑
iQi

where each Qi acts non-trivially on a constant number of

qubits (hence the term local Hamiltonian). We assume that

H has a unique ground state of energy 0, which is also a

common zero eigenvector of all terms Qi; this means that H
is frustration free. We also assume that H is “gapped”, i.e.,

H’s smallest eigenspace is 1 dimensional and has eigenvalue

0, and all other eigenvalues are equal or larger than some

constant ε > 0. We denote by H′ ⊂ H the orthogonal

complement to the one dimensional ground space of H .

Thus H′ is an invariant subspace for H , and

H|H′ ≥ ε�. (3)

Throughout this extended abstract we further assume that

the Qi’s are projections. The projection restriction can be

lifted easily to general positive semi-definite matrices. Pi is

defined to be the projection on the ground space of Qi and

so we have in this case Pi = �−Qi.

Given a state |φ〉 and a partition of the qubits to two

non-intersecting sets, R and L, with corresponding Hilbert

spacesHL,HR, we can consider the Schmidt decomposition

of the state along this cut |φ〉 =∑i λi|Li〉⊗ |Ri〉. We shall

be interested in the non-zero Schmidt coefficients, which

will be ordered in a descending order: λ1 ≥ λ2 ≥ . . ..
The Schmidt rank (SR) of |φ〉 is then the number of non-

zero coefficients λi, and will be denoted by SR(φ). The

entanglement entropy is the entropy of the set {|λi|2},
or equivalently, the Von Neumann entropy of the reduced

density matrix ρL(φ).

Finally, we mention an important fact about the SR

which follows from Eckart-Young theorem [4]. It states

that the truncated Schmidt decomposition provides the best

approximation to a vector in the following sense:

Fact 2.1: Let |φ〉 be a vector on HL⊗HR with Schmidt

coefficients λ1 ≥ λ2 ≥ . . . . The largest inner product

between |φ〉 and a norm one vector with SR r is
√∑r

i=1 λ
2
i .

3. THE DETECTABILITY LEMMA: STATEMENT AND A

NEW PROOF

For the sake of readability, we will state and prove the

lemma under the assumption that the qudits are set on a

line and that the interaction terms are two-local nearest

neighbors. We partition the set of projections {Pi} into two

sets: {P1, P3, . . . } and {P2, P4, . . . } which we shall call

the odd and even layers (see Fig. 1). Notice that all the

projections within each layer commute. We shall denote

Πodd = P1P3 · · · , (respectively Πeven = P2P4 · · · ) the

product of the projections in the odd (respectively even)

layer. Let A = ΠoddΠeven. Notice that A fixes the ground

state of H . In this case the DL states:

Lemma 3.1 (The Detectability Lemma (DL) in 1D): The

operator A = ΠoddΠeven, when restricted to the invariant

subspace H′, is norm bounded above as follows:

‖A|H′‖ ≤ 1

(ε/2 + 1)1/3
.

Note that the above bound holds also when the ground state

is not unique.

Proof: The following is a simple but crucial fact for the

proof, upper bounding the product of a projection Y , fol-

lowed by another projection X , followed by the complement

of Y , �− Y :



P1 P3 P5 P7 P9 P11

P2 P4 P6 P8 P10

Δ1︷ ︸︸ ︷ Δ2︷ ︸︸ ︷ Δ3︷ ︸︸ ︷

Figure 3. A set of pyramids (gray ovals) in the 1D case. The white
ovals are the projections that make up the operator R. The pyramid-like
structure guarantees that A = (P2 · P4 · P6 · · · ) · (P1 · P3 · P5 · · · ) =
Δ1Δ2 . . .ΔmR.

Lemma 3.2: Given arbitrary projections X,Y and |v〉 of

norm 1, if ‖XY v‖2 = 1− ε then

‖(�− Y )XY v‖2 ≤ ε(1− ε) . (4)

The proof of the above lemma is a few lines of simple

algebra.

Let us now continue with the proof of the DL. Consider

|ψ〉 ∈ H′, a norm 1 state that is orthogonal to the ground

space (and therefore has energy at least the spectral gap ε)

and define |φ〉 def
= A|ψ〉. We want to show that

‖φ‖ ≤ 1

(ε/2 + 1)1/3
. (5)

We will show upper and lower bounds for the energy

〈φ|H|φ〉. The lower bound is easy since |φ〉 ∈ H′, as A
preserves the ground space, and so

〈φ|H|φ〉 ≥ ε‖φ‖2 . (6)

The main effort is to upper bound 〈φ|H|φ〉. We will show

that 〈φ|H|φ〉 ≤ 2(1 − ‖φ‖2)/‖φ‖, which implies the in-

equality

ε‖φ‖2 ≤ 〈φ|H|φ〉 ≤ 2
1− ‖φ‖2
‖φ‖ . (7)

This implies ε‖φ‖3 ≤ 2(1 − ‖φ‖3) from which Eq. (5)

immediately follows.

We begin by noting that 〈φ|H|φ〉 is a sum over the

contributions of the individual terms 〈φ|Qi|φ〉. These terms

equal to 0 for i odd since A = ΠoddΠeven and QiΠodd = 0
for any odd i (recall that Πeven,Πodd are products of the

projections Pi = � − Qi). We now want to bound the

contributions coming from the even terms.

For this purpose we present A in a convenient form, by

reordering its terms. We call the triplet product of projections

(P1P3P2), (P5P7P6), . . . Pyramids, and denote them by Δi;

the remaining operators are combined to the operator R
def
=

P4P8 . . . (see Fig. 3). We can write:

A = Δ1Δ2 . . .ΔmR ,

where m is the number of pyramids (which is approximately

n/4). This holds since the terms in R commute with the

terms with which they were swapped.

We will use this reordering to bound the energy contri-

bution of the terms Q2, Q6, . . . ; a symmetric argument will

bound the remaining even terms, namely Q4, Q8 etc.

The key point in proving this bound is this. We view the

transformation of |ψ〉 → A|ψ〉 = |φ〉 as a series of steps

given by the application of the pyramids Δi. Let |vi〉 def
=

ΔiΔi+1 · · ·ΔmR|ψ〉, with |v1〉 = |φ〉. The square of the

norm of the first state, R|ψ〉, (which we denote by vi+1) is

am
def
= ‖Rψ‖2. Let ai

def
= ‖vi‖2/‖vi+1‖2 be the “shrinkage”

resulting from the application of the ith pyramid, for 1 ≤
i < m. We are interested in bounding ‖v1‖2 = ‖φ‖2; it is

exactly the product of the ai’s.

It turns out that the shrinkage ai is related to the energy of

the operator Q at the top of the relevant pyramid Δi. Indeed,

since this Q (whose index is Q4i−2) commutes with all the

pyramids up to Δi, we have:

〈φ|Q4i−2|φ〉 = ‖(�− P4i−2)Aψ‖2
= ‖Δ1 · · ·Δi−1(�− P4i−2)Δivi+1‖2
≤ ‖(�− P4i−2)Δivi+1‖2 .

Now recall that Δi = P4i−3P4i−1P4i−2, and so we

can apply Lemma 3.2 to (� − P4i−2)Δi
vi+1

‖vi+1‖ (with

Y = P4i−2 and X = P4i−3P4i−1). We conclude that

‖(�− P4i−2)Δivi+1‖2 ≤ (1− ‖Δivi+1‖
‖vi+1‖ )(1− ai)‖vi+1‖2 =

(1− ai)‖vi+1‖2 ≤ (1− ai). Consequently

〈φ|Q4i−2|φ〉 ≤ 1− ai .

This upper bound gives an upper bound for the energy

contribution for Qi, i ∈ {2, 6, 10, . . . }:

〈φ|(Q2 +Q6 + . . .)|φ〉 ≤
∑

i=2,6,...

(1− ai) ,

with the constraint
∏
ai = ‖φ‖2. The term

∑
i(1 − ai)

is maximized under this constraint when all ai are equal,

i.e., when ai = ‖φ‖ 2
m , and therefore we are left with the

following upper bound on the energy of Q2 +Q6 + . . . :

〈φ|(Q2 +Q6 + . . .)|φ〉 ≤ m
[
1− ‖φ‖2/m

]
≤ 1− ‖φ‖2

‖φ‖ .

The last inequality follows from the fact2 that for every x ∈
[0, 1], we have m

[
1− x1/m] ≤ 1−x√

x
.

For the energy of Q4 +Q8 + . . ., a similar argument can

be applied, and therefore the total energy is upperbounded

by 2(1− ‖φ‖2)/‖φ‖.

2This inequality can be easily verified by noticing that fm(x)
def
=

m
√
x
[
1− x1/m

]
+ x is equal to 1 for x = 1 and has a non-negative

derivative for x ∈ [0, 1].



|Ω〉

〈Ω|

Y

X

Figure 4. An illustration of the statement 〈Ω|XY |Ω〉 =
〈Ω|XPinPoutY |Ω〉. The operator Pout is drawn in light gray and Pin is
in dark gray. Note that the number of projection layers is proportional to
the distance between X and Y .

4. EXPONENTIAL DECAY OF CORRELATIONS

Consider now a k-local Hamiltonian H =
∑

iQi defined

on a D-dimensional grid. Once again, we assume that Qi

are projections, and that H is frustration-free with a unique

ground state |Ω〉 (i.e., Qi|Ω〉 = 0), and a spectral gap ε >
0. Let X,Y be two local observables whose distance on

the grid between each other is m. Denote X̄
def
= 〈Ω|X|Ω〉,

Ȳ
def
= 〈Ω|Y |Ω〉.
We wish to show:

Lemma 4.1 (Exponential decay of correlations): The

correlation of the X,Y observables in the ground state

obeys

|〈Ω|(X − X̄)(Y − Ȳ )|Ω〉| = |〈Ω|XY |Ω〉 − X̄Ȳ | (8)

≤ ‖X‖ · ‖Y ‖ · e−O(m) .

Proof: Let us now consider two operators: Pin, Pout:

Pin is defined by applying the DL � times to Y and

discarding all projections outside the causality cone of Y .

� is chosen such that the resulting cone will not overlap

with X (see Fig. 4). Therefore � ∝ m, with the propor-

tionality constant that is a geometrical factor. Pout is the

complement of Pin, i.e., it is the product of layers that one

get by applying the DL � times, but with a “hole” where

the causality cone of Y is. The fact the non-overlapping

projections commute implies Pin · Pout = A� – See Fig. 4

for an illustration in 1D.

Both Pin, Pout leave the ground-state invariant. In addi-

tion, they commute with X and Y respectively, hence

〈Ω|X = 〈Ω|XPin , Y |Ω〉 = PoutY |Ω〉 ,
and therefore

〈Ω|XY |Ω〉 = 〈Ω|XPinPoutY |Ω〉 = 〈Ω|XA�Y |Ω〉 .

But by the DL 3.1, ‖A� −Πgs‖ ≤ e−O(�) = e−O(m) where

Πgs is the projection to the ground state (see Eq. (2)).

Therefore

∣∣〈Ω|XY |Ω〉 − 〈Ω|XΠgsY |Ω〉
∣∣ ≤ ‖X‖ · ‖Y ‖ · e−O(m) .

Assuming that the ground state is unique, Πgs = |Ω〉〈Ω|,
and therefore 〈Ω|XΠgsY |Ω〉 = X̄Ȳ , hence∣∣〈Ω|XY |Ω〉 − X̄Ȳ ∣∣ ≤ ‖X‖ · ‖Y ‖ · e−O(m) .

5. IMPROVED 1D AREA LAW

Consider a 1D frustration-free, nearest-neighbor Hamil-

tonian over n particles of dimension d, given by H =∑n−1
i=1 Qi. Assume that H has a unique ground state |Ω〉

and a spectral gap ε > 0. Then |Ω〉 satisfies the following

area law:

Theorem 5.1: Along any cut in the chain, the von-

Neumann entanglement entropy of |Ω〉 bounded by

S ≤ XO(logX) (9)

for X
def
= 1

ε log d.

Proof: As explained in the introduction, we consider

the Schmidt decomposition of the ground state |Ω〉 =∑
i λi|Li〉 ⊗ |Ri〉 for a given cut. We want to approximate

the ground state by starting from the product state |φ〉 def
=

|L1〉⊗|R1〉 = λ1|Ω〉+|Ω⊥〉, which by Fact 2.1 is the product

state with the largest overlap with the ground state. Applying

the DL � times, we obtain a state |φ�〉 def
= A�|L1〉⊗ |R1〉. In

terms of the ground state, and its perpendicular space, |φ�〉
can be written as

|φ�〉 = λ1|Ω〉+ |Ω⊥� 〉 , (10)

where |Ω⊥� 〉 ∈ H′. By the DL, ‖Ω⊥� ‖ ≤ Δ�
0, where

Δ0
def
= (1 + ε/2)−1/3 is the shrinkage factor provided by

one application of the DL (see Lemma 3.1). Moreover, by

the same argument as for the commuting case, it is easy to

see that every application of A increased the SR along the

cut by at most D0 = d2, and so SR(φ�) ≤ D�
0.

Now, there is a tradeoff between how fast the component

orthogonal to the ground state shrinks and the increase in

the SR. This tradeoff is captured by the product Δ0D0.

Consider for a moment the case of Δ0D0 < 1. Applying the

DL for � = −1
log(Δ0D0)

would give us a state |φ�〉 such that

SR(φ�) · ‖φ�‖ = (D0Δ0)
� < 1/2. The following is a simple

observation is that if such a state exists, then λ1 is large,

and consequently, the ground state has a large projection on

the product state |L1〉 ⊗ |R1〉:
Lemma 5.2: If λ1 is the largest Schmidt coefficient of |Ω〉

and there is a state |ψ〉 such that |ψ〉 = λ1|Ω〉 + |Ω⊥〉 and

SR(ψ) · ‖Ω⊥‖ ≤ 1/2, then

λ21 ≥
1

2 SR(ψ)
. (11)

The proof of this lemma is simple and is given in the

Appendix.

It is well known that if the ground state has a constant

projection on a product state, the area law follows; indeed,



a similar argument is used in Hastings’ 1D area law for

bounding the entropy once a constant overlap with a product

state was found. Here we can replace this argument once

again with the DL. Using the same sequence of states |φ�〉,
together with the fact that λ1 is constant, enables us to

achieve good approximations of |Ω〉 after only a constant

number of steps �. This provides a sequence of states which

on one hand we know have a small SR, and on the other

approximate the ground states well; by the Eckart-Young

theorem (Fact 2.1) this induces a series of constraints on the

Schmidt coefficients {λi} of |Ω〉 that exponentially bound

the amount of mass in the high coefficients. This bound

can then be exploited to bound the entanglement entropy

S = −∑i λ
2
i log λ

2
i . We arrive at the following lemma,

whose exact derivation can be found in Appendix A.

Lemma 5.3 (Large overlap with implies area law):
If there exists a product state |φ1〉 ⊗ |φ2〉 such that

|〈φ1 ⊗ φ2|Ω〉| = μ, the entanglement entropy of |Ω〉 is

upper bounded by

S(Ω) ≤ O(X) · [ log 1

μ2(1−Δ2
0)

+ 2
]
, (12)

with X
def
= 1

ε log d.

Now, the problem is that of course, there is no reason to

assume that D0Δ0 < 1; for most values of ε and d this will

not be the case.

The solution, which is the main technical innovation of

this proof, is to improve the operators A� of the DL by

a process of diluting. Instead of applying A�, we apply a

different operator, which “applies” fewer projection terms

than A�, and therefore generates |φ�〉 with a much lower

SR, while maintaining a small ‖Ω⊥� ‖. This is achieved by

the following lemma:

Lemma 5.4 (The diluting lemma): For every ε > 0 and

d, there exists a series of operators Â� such that |φ�〉 def
=

Â�|L1〉⊗|R1〉 = λ1|Ω〉+ |Ω⊥� 〉 has the following properties:

SR(φ�) ≤ DID
� and ‖Ω⊥� ‖ ≤ Δ�, with Δ · D < 1/2 and

logD = O(X), logDI = XO(logX).

Using this lemma together with Lemma 5.2 gives us the

lower bound λ21 ≥ 1
(DDI)Dlog DI

. Inserting this bound into

Lemma 5.3 then proves the theorem.

We now proceed to sketch the proof of Lemma 5.4.

5.1. The proof of the diluting lemma (a sketch)

Assume without loss of generality that the projection in

A that straddles the given cut belongs to the even layer in

A. We will focus our attention on this layer, since the other

layer does not increase SR.

Consider a segment I1 (of 2m qudits) around the cut,

which contains m projections P (1), . . . , P (m) from the even

layer (we assume that the cut intersects with P (m/2)). We

denote the projections by P (i) rather than Pi, for reasons

to become clear later. The projection P1
def
= P (1) · · ·P (m)

projects into the common ground state of the region I1 in

the even layer. We will now define the operator P̂1, which

closely approximates P1, but which creates significantly less

entanglement. We call P̂1 the “dilution” of P1.

Sectors: We first observe that the projections P (i) com-

mute among themselves. This means that the “number

of violations” of those projections has a meaning; we

can decompose the Hilbert space in terms of the mutual

eigenspaces of those operators (there are 2m such sub-

spaces), and those eigenspaces will be denoted by m bits

strings s = (s1, s2, . . . , sm) corresponding to whether the

state is inside the null space of the projection or orthogonal

to it. A subspace with si = 1 would be the subspace

that is annihilated by P (i). We refer to these subspaces as

“violations”, since they are orthogonal to the ground state.

For a given sector s, we will denote its total number of

violations by |s|. Note that P1 annihilates all but the zero

violations sector.

Defining the diluted operator P̂1: P̂1 is given by the

following formula:

P̂1
def
= �1 · · ·�j · P (i1) · · ·P (irm) , (13)

where we use the following definitions. First, the P (ij)

projections are randomly chosen rm projections out of the

possible m projections in I1. Then the �k operators are

defined as follows: let �
def
=
∑m

i=1(�−P (i)). � counts the

number of violations in each sector:�|s〉 = |s|·|s〉. Then we

set �k
def
= �− 1

k�. It is easy to see that �k|s〉 = (1− |s|k )|s〉,
and so �k “kills” the k sector, while shrinking sectors with

|s| < k and amplifying those with |s| > k.

We now want to claim two things about this operator: a)

that the operator approximates the projection P1 very well,

and b) that it creates (on average, in a sense to be clarified

soon) significantly less entanglement along the cut. To this

aim, we define two important factors: 1) The shrinking factor

Δ1, and 2) The SR factor D1. These factors are defined by

replacing P1 �→ P̂1 in Πeven, and applying this modified

DL operator for � times on |L1〉 ⊗ |R1〉. Then Δ1 is the

factor that bounds the norm of the part perpendicular to the

ground state, and D1 is asymptotically the average SR that

is created by each line.

Let us first argue regarding the quality of the approxima-

tion. We claim that

Claim 5.5: The shrinking factor of P̂1 is Δ1 = Δ0+2−j

.

It is easy to see that if |s〉 is in the s sector with k = |s|
violations, then the probability that it would be annihilated

by our random product is

Pr =

(
m−k
rm

)(
m
rm

) ≤ (1− r)k .



Using the probabilistic method, it is then straightforward

to deduce that for a general state |ψ〉 =
∑

s cs|s〉,
one can always find rm projections that would yield

‖P (i1) · · ·P (irm)|ψ〉‖2 ≤ ∑
s |cs|2(1 − r)|s|. We see that

the random projections can erode most of the mass of the

high violations sectors. The sectors with low violations are

taken care of by the �k operators: they shrink the mass in

the |s| < k sectors, annihilate the the |s| = k sectors and

inflate the mass in the |s| > k sectors. The idea is that we

use these operators to kill the first j sectors, and the rm
random projections to kill much of the mass of the high

sectors.

It is easy to verify that P̂1 leaves the zero violation

sector invariant and annihilates all the sectors with k ≤ j
violations. For sectors with k > j violations, it shrinks the

mass by a factor at most
[(

k−1
j−1

)]2
(1 − r)k ≤ 4k(1 − r)k,

and therefore by taking r = 9/10, we obtain a shrinking by

a factor smaller than 2−k. Since k ≥ j, the overall error is

at most 2−j . While the shrinkage factor per application of

the DL, associated with the operator P1 is Δ0, if we apply

the operator P̂1 in Πeven it would yield an operator whose

effective shrinkage factor per application of an even layer is

given by the factor Δ1 = Δ0 + 2−j . Taking j large enough

we can maintain a very close shrinkage factor to the original

one.

We would now like to claim that the operator P̂1 is much

more efficient in terms of the SR it generates than P1. We

claim:

Claim 5.6: The SR factor of P̂1 is D1 =

(20j3/2J1/2)D
j logm/m
0 D

9/10
0 , where J

def
= jlog j .

To argue this, we will argue separately for the contribution

of the P (i) to the SR, and of the �k.

Roughly speaking, applying P̂1 for � times, we expect

the columns in the segment I1 to contain r� projections

instead of � projections. Therefore, the expected SR (per

application of the even layer) should grow like Dr
0 (with

r = 9/10) instead of D0. This intuition is correct, but one

has to argue why the �k operators do not introduce too

much entanglement.

To understand how to bound the SR that is generated

by the �1 · · ·�j operators, let us start by considering

just the SR generated by one �k. Consider the operator

�
def
=
∑m

i=1 P
(i), which appears in every �k since we can

write �k =
(
1− m

k

)
� + 1

k�. Let us understand how to

upper bound the SR of the state (�Πodd)
�|L1〉⊗|R1〉 along

the cut in the middle. This is a simpler problem, which,

nevertheless, contains all the necessary ingredients needed

for the general case; the analysis of applying several �k’s

is more involved but relies on similar ideas, and it is not too

difficult to see that the operators P (i),which we currently

ignore, do not affect this argument.

Naively, an application of � would increase the SR by

the factor D0 + 1 (since it is the sum of the entangling

P (i) and the other, non-entangling projections). We need

to provide a better upper bound. The idea is to find one

column, not too far from the cut, in which the number

of entangling projectors is significantly smaller. If such a

column exists within distance m from the middle cut, then

the SR generated at the cut can be at most the SR generated

in that column times dm, because dm is the dimension of

the Hilbert space of all the qudits in the segment.

To argue the existence of such a sparse column, write

� = �L +�R where �L is the sum of all the projections

left to the cut, and �R is the sum of the rest. Then

(�Πodd)
� = [(�L + �R)Πodd]

� breaks into 2� terms. We

will upper bound the SR of each term individually, and so the

overall SR would be bounded by the sum of the different

SRs. Considering one such term, either a �L or a �R at

every even layer. Therefore there must be a side in which

there are at most �/2 operators, and assume WLOG that this

is the left side. Then we choose to estimate the SR in the

middle of that side. In the worst case, the SR contribution

in the middle of the left side is due to �/2 �L. To bound it,

we bisect the left segment and write �L = �LL + �LR –

similarly to what was done before. Now the product of �/2
�L terms breaks into the sum of 2�/2 terms, and again we

bound the SR of each term individually, by looking at the

side that has less than �/4 entangling operators.

Proceeding this way for logm times, we end up with at

most 2�+�/2+�/4+... ≤ 4� terms, each of which has a column

i that contains at most �/m entangling operators P (i). The

SR of each such term at that column is D
�/m
0 , and so its SR

at the middle cut is at most D
�/m
0 dm. Summing up the SR

of all terms, we find SR ≤ (4D
1/m
0 )�dm. Except from an

overall factor of dm (which we will handle separately), we

see that the effective SR factor of the � operators is 4D
1/m
0 ,

which can be significantly smaller than D0 for large D0.

In the general case, where we have �1 · · ·�j , a similar

derivation implies that we end up with (20j3/2J1/2)� terms,

where J
def
= jlog j , and each term would have a column i with

only j logm
m � entangling operator. Together with the SR con-

tribution of the random operators, we can upper bound the

SR of � such layers by
[
(20j3/2J1/2)D

j logm/m
0 D

9/10
0

]�
dm.

Concatenation analysis: We conclude that diluting the I1
segment, namely replacing the projection P1 on its ground

state by P̂1, resulted in new effective factors

Δ0 �→ Δ1 = Δ0 + 2−j , (14)

D0 �→ (20j3/2J1/2)D
j logm/m
0 D

9/10
0 . (15)

The final step of the proof is to use the diluting procedure

iteratively, much like the concatenation of error correction

codes. In the next level, we consider the segment I2 that

contains m2 projections, arranged as m segments of type I1.

Using the same recipe, we dilute its corresponding projection

P2 = P
(1)
1 · · ·P (m)

1 , where here each of the projections P
(i)
1



is itself a product of m projections. We then replace the

P
(i)
1 projections by their diluted version P̂

(i)
1 . Continuing

this way, it is possible to prove, that as long as m < 40 · 2j ,

the error does not accumulate, and consequently, after n
iterations:

Δn = Δ0 + 2−j , (16)

Dn = (20j3/2J1/2)D
j logm/m
0 D

9/10
n−1 (17)

=
[
(20j3/2J1/2)D

j logm/m
0

]10
D

(9/10)n

0 . (18)

The segment over which we performed the n iterations

consists of mn projections, which are defined on 2mn qudit.

The distance between the middle cut and the any column

in the segment is therefore at most mn qubits, and so the

estimate the SR after � layers of the diluted operator is

D�DI , where DI = dm
n

.

It is now easy to pick n,m, j as functions of ε, d that

would give us the promised values for Δ, D,DI .
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APPENDIX

Proof of Lemma 5.2:
We write the (un-normalized) Schmidt decomposition of

|ψ〉 as

|ψ〉 =
R∑
i=1

μi|Ai〉 ⊗ |Bi〉 = λ1|Ω〉+ |Ω⊥〉 . (19)

(where μ1 ≥ μ2 ≥ . . ., R
def
= SR(ψ), and ‖ψ‖2 =

∑
i μ

2
i ).

Using Fact 2.1, the overlap of every product state |X〉 ⊗
|Y 〉 with |Ω〉 is at most λ1, its largest Schmidt coefficient.

Therefore for every i, |〈Ω|Ai〉|Bi〉| ≤ λ1, and so multiplying

Eq. (19) by 〈Ω| and taking the absolute value, we get

λ1 = |〈Ω|ψ〉| = |
R∑
i=1

μi〈Ω|Ai〉|Bi〉| ≤
R∑
i=1

μiλ1 .

Therefore μ1, the largest Schmidt coefficient of |ψ〉, must

satisfy μ1 ≥ 1
R . On the other hand, multiplying Eq. (19) by

〈A1|〈B1|, and using once again the fact that |〈A1|〈A1|Ω〉| ≤
λ1 gives us μ1 ≤ λ21 + ‖Ω⊥‖. All together, we get

1

R
≤ μ1 ≤ λ21 + ‖Ω⊥‖ , (20)

from which we get

λ21 ≥
1

R
− ‖Ω⊥‖ = 1

R
(1−R · ‖Ω⊥‖) ≥ 1

2R
.

Proof of Lemma 5.3:
Let

|Ω〉 =
∑
i≥1

λi|L1〉|Ri〉 (21)

be the Schmidt decomposition of |Ω〉 with respect to its

bi-partitioning, with, use the DL on asserted product state

|φ〉 = |φ1〉⊗|φ2〉 to generate a sequence of converging states

|φ�〉 def
= A�|φ〉. Then SR(φ�) ≤ D�

0 and |φ�〉 = μ|Ω〉+ |Ω⊥� 〉
with ‖Ω⊥� ‖ ≤ Δ�

0.

Defining |v�〉 to be the normalization of |φ�〉, we get

|〈v�|Ω〉| ≥ μ√
μ2 +Δ2�

0

.

Since SR(v�) ≤ D�
0, it follows from Fact 2.1 (Eckart-Young

theorem) that∑
i>D�

0

λ2i ≤ 1− μ2

μ2 +Δ2�
0

≤ 1

μ2
Δ2�

0 .

We found that the distribution of Schmidt coefficients of

|Ω〉 must satisfy a series of inequalities, which essentially

limit the amount of mass found in the high Schmidt coeffi-

cients. It is easy to see that in such case the entanglement

entropy is bounded by the entanglement of the steps-like

distribution of weights that is implied by the above inequal-

ities. This bound is formally given by the following lemma,

which is proved in the end of this section.

Lemma A.1: If a probability distribution obeys∑
i>AD�

pi ≤ Kθ� , (22)

with A,K,D > 1 and 0 < θ < 1, then

S ≤ 2 logA+ 3

(
log K

1−θ + 1

log(1/θ)
+ 2

)
logD . (23)

Substituting A = 1, D = D0,K = μ−2, and θ = Δ2
0, then

gives us

S ≤ 3

(
log 1

μ2(1−Δ2
0)

+ 1

2 log(1/Δ0)
+ 2

)
logD0 (24)

=
3

2

logD0

log(1/Δ0)

[
log

1

μ2(1−Δ2
0)

+ 1 + 4 log(1/Δ0)
]

(25)

≤ 3

2
X
[
log

1

μ2(1−Δ2
0)

+ 2
]
. (26)

Where in the last inequality, we used the fact that X =
logD0

log(1/Δ0)
(see text above Lemma 5.4) and the assumption

that ε ≤ 1, which implies 4 log(1/Δ0) ≤ 1.



We end the proof of the lemma by proving Lemma A.1

Proof:
Call the set of weights {pj} for AD� + 1 ≤ j ≤ AD�+1

the �’th block. Then the constraints in Eq. (22) imply that

for every block � ≥ 1,

AD�+1∑
j=AD�+1

pj ≤ Kθ� . (27)

Obviously, by reshuffling the mass within a block we

maintain the constraints in Eq. (22). Moreover, it is straight

forward to see that the entropy contribution of every block is

maximized when all the weights in it are equal. The maximal

distribution is therefore a steps function, which satisfies:

in block �, pj ≤ Kθ�

AD�+1 −AD�
=

K

A(D − 1)
(θ/D)� .

(28)

We now define �0 to be the first block for which Kθ� ≤
1
2 (1− θ)θ:

log 2K
θ(1−θ)

log(1/θ)
≤ �0 ≤

log 2K
θ(1−θ)

log(1/θ)
+ 1 =

log K
1−θ + 1

log(1/θ)
+ 2 .

(29)

We will bound the maximal entropy by bounding the

entropy contribution of blocks up to (and including) �0 − 1
and blocks from �0 onwards. The first is easy, as there are

AD�0 weights in the low blocks:

SI ≤ log(AD�0) = �0 logD + logA . (30)

In the high blocks, pj ≤ 1
2 (1 − θ) ≤ 1/2, so we can

use the monotonicity of the function −p log p in the range

(0 : 1/2] to bound the entropy by

SII ≤ −
∑
�≥�0

Kθ� log[
K

A(D − 1)
(θ/D)�]

≤
∑
�≥�0

Kθ� log(AD�+1)

=
Kθ�0

1− θ
[
logA+

(
�0 +

1

1− θ
)
logD

]
≤ logA+

(
�0 +

1

1− θ
)
logD ,

where the second equality follows from standard geometric

sums identities, and the last inequality follows from the

definition of �0. Next, looking at the lower bound of �0
in Eq. (29), it takes standard calculus to verify that �0 ≥
1+log 1

1−θ

log(1/θ) + 1 ≥ 1
1−θ , and so SII ≤ logA+ 2�0 logD, and

S = SI + SII ≤ 2 logA+ 3�0 logD .

Plugging the upper bound of �0 from Eq. (29), we get

Eq. (23).
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